
Software Categorization Using Low-Level
Distributional Features

Zalán BODÓ a, Bipin INDURKHYA b

a Romanian Institute of Science and Technology, Cluj-Napoca, Romania / Faculty of
Mathematics and Computer Science, Babeş–Bolyai University, Cluj-Napoca, Romania;

bodo@rist.ro
b Romanian Institute of Science and Technology, Cluj-Napoca, Romania / Department

of Cognitive Science, Jagiellonian University, Cracow, Poland; indurkhya@rist.ro

Abstract. In recent years, there has been a growing interest in applying deep learn-
ing techniques for automatic generation of software. To achieve this ambitious ob-
jective, a number of smaller research goals need to be reached, one of which is
automatic categorization of software, used in numerous tasks of software intelli-
gence. We present here an approach to this problem using a set of low-level fea-
tures derived from lexical analysis of software code. We compare different feature
sets for categorizing software and also apply different supervised machine learning
algorithms to perform the classification task. The representation allows us to iden-
tify the most relevant libraries used for each class, and we use the best-performing
classifier to accomplish this. We evaluate our approach by applying it to categorize
popular Python projects from Github.

Keywords. software categorization, text categorization, software intelligence,
distributional features, feature selection

1. Introduction

In recent years, there has been much interest in applying the techniques of machine
learning for modeling the process of software generation with the goal of being able to
generate software automatically or semi-automatically [9,1,8]. We are also conducting
research in this area, which is focused on using deep-learning and cognitive modeling
approaches for software generation. In a recent publication of our research group [19], we
used a visual representation of the memory dynamics of programs to cluster and classify
sorting algorithms. Towards the grandiose goal of automatic software generation, we are
exploring the idea of using low-level static features of software for categorization, where
low-level means that only lexical analysis of the programs is performed. Such features
in turn can be used to make recommendations to programmers about software libraries
anticipated as most likely to be important. In this paper, we present our preliminary
results of this research.

From amongst the applicative goals of the above-mentioned research project, we
can mention the development of an intelligent system that assists programmers by au-
tocomplete suggestions, best practice and other similar recommendations [26,12]. One
such important recommendation would be a list of the most relevant libraries for the ac-

New Trends in Intelligent Software Methodologies, Tools and Techniques
H. Fujita et al. (Eds.)

IOS Press, 2017
© 2017 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-61499-800-6-88

88



tual software project, given some keywords or a textual description. Automatic labeling
can also be of great help in searching for similar projects. Good representations can lead
to good similarity measure, which is a central problem of automatic code generation.
Low-level features are considered to be important, because a wide range of programming
languages can be efficiently covered using a relatively small set of regular expressions.

In this paper we present the selection of useful features using only lexical analysis
of program code; these features are then used to automatically label software and also to
group them into categories.

The paper is structured as follows: Section 2 enumerates some of the existing cat-
egorization approaches for software projects. In Section 3 we present our approach: the
low-level representation of software for categorization and feature identification. Sec-
tion 4 describes the method used for identifying the most relevant features. In Section 5,
we present our experiments, results and discussion. Finally, Section 6 presents the con-
clusions and possible extensions of this research.

2. Categorizing Software

Software categorization is an important problem of software intelligence systems [5]:
categorization is usually performed using statistical machine learning techniques; but,
before doing this, a suitable representation of software is needed. In [5], the authors focus
on four related problems that use categorization (malware, plagiarism, theft and clone
detection), and present possible representations and similarity metrics or distances for
measuring software proximity. For example, a software can be represented as a string of
the source code, and distance can be measured using the longest common subsequence
algorithm; for vector-based representation one can use the cosine similarity, for sets the
Jaccard index, and for graphs or trees the graph edit distance.

The multi-label approach MUDABlue presented in [15] uses as features the identi-
fiers (function, class, variable, etc. names), and applies latent semantic analysis (LSA)
for dimensionality reduction and better representation [7].

In [14], three different approaches are compared: a similarity-based technique using
the number of code clone lines, a supervised learning system using decision trees and
character-level trigrams of filenames of the source code files as features, and an LSA-
based approach described in [15].

The work presented in [18] traces API calls in binary executables, and uses these
as features for classification. It compares three machine learning algorithms, support
vectors machines (SVMs), decision trees and naive Bayes classifiers. A great advantage
of their method is that it can be applied also on closed-source software repositories.
Feature selection is accomplished using expected entropy loss.

In [24], latent Dirichlet allocation was used for categorization, using identifiers and
(tokenized) comments as features.

From the literature one can observe that categorization is usually done using some
low-level features. This can be explained by the fact that in many application domains,
programming paradigms do not change; therefore using control or data flow graphs might
not explain the expected effects. Another disadvantage of using more complex analysis
and program representation is the increased computational demand and the difficulty to
adapt to new programming languages. However, before moving ahead with such assump-

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features 89



tions, a thorough investigation of these representations and the underlying challenges is
needed.

We compare here different low-level representations for software categorization, and
use the trained classifier to identify relevant features for every category. The described
system can be easily extended or modified to support a wide range of programming
languages.

3. Categorization Using Low-Level Features

Comparing different feature sets for representing software project, our goal is to demon-
strate empirically that using the distribution of the used libraries1, one can obtain a better
representation than using all lexical tokens as in information retrieval; in other words,
the distribution of the used libraries induces a better similarity measure.2 Also, besides
improving the prediction performance of the system, we work in a significantly lower-
dimensional space. The system built in this way can be used for multiple problems: for
automatically categorizing software projects and also for identifying the most influential
modules for different categories.

In text categorization, and more generally in information retrieval [23,17], the bag-
of-words model is one of the most popular representation; despite its simplicity, it per-
forms surprisingly well. The simplicity lies in the independence assumption regarding
the words: no language grammar or text semantics is taken into consideration, not even
the ordering of the words. Spam filtering provides a good example domain [2] where
the occurrences of certain words or simple combinations can be good indicators of the
document’s topics.

A bag-of-words equivalent representation for software projects would be taking all
the tokens returned by the lexical analyzer and using them as features. Of course, de-
pending on the programming language, some of the evidently irrelevant tokens can be
neglected from the beginning: for example the symbols representing code blocks, sepa-
rators of the variables in a method call, braces, etc. We call these features low-level, since
from the classical phases of program analysis (lexical, syntactic and semantic) [16] we
perform only the first step of analysis.

In this study, we focus on the software projects written in Python. For processing
the Python programs, we defined the following feature sets:

FS1 Using only token.NAME token types (tokenize and token Python modules):
this type represents all named tokens like variable, method, class, etc. names. The
idea behind this representation is that operators, constants, etc. are probably less
relevant when comparing two programs or projects. This representation is similar
to [15].

FS2 Using all the tokens retrieved by the Python tokenizer, except the following four
token types: token.N TOKENS (comments), token.NEWLINE, token.INDENT,
token.DEDENT.

1Throughout the paper we will use the terms library, module and import interchangeably.
2The selection of specific keyword types is somewhat equivalent to part-of-speech tagging-based term se-

lection in information retrieval and natural language processing.

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features90



FS3 Using only the imported packages and modules with their names as features.
The underlying idea is that if one wants to measure similarity between software
projects, it might be a good idea to examine the imported modules, since projects
having similar profiles should use about the same set of modules. Evidently, ob-
serving only the imports is just a rough approach, a better method should also
consider the usage patterns of the imported libraries. This is partly accomplished
by the next feature set.

FS4 Using the imported modules and the trace of usage frequencies. The central
question here is how to trace the usage of different modules? Since we only per-
form lexical analysis of the code, we can only observe method calls and class in-
stantiations. Hence, after obtaining the names of the imported modules, we search
for method and class names in the code to find calls, object creations and count
these too. This approach resembles the method of [18].

In FS3 and FS4, if an imported module was found, the top-level and all possible submod-
ules are similarly included in the feature set.3

4. Feature Identification Using Support Vector Machines

Feature selection in machine learning means dimensionality reduction by selecting some
of the most relevant dimensions or features of the input space to represent our data [10].
Feature extraction, however, uses the input features and some function of these to create
new ones; see for example PCA or kernel PCA [22]. Selection is usually preferred over
extraction if interpretation of the reduced dimensions is needed. Selecting features is per-
formed prior to the application of the learning algorithm to filter out irrelevant dimen-
sions and noise, thereby improving the performance of the method. However, sometimes
the goal is not only to build a good predictor, but to find the most important features,
based on which (good) predictions can be made—we call this feature identification.

Based on the experiments presented in Section 5, and considering the reported re-
sults from the literature [11], SVMs were chosen for performing feature identification.

In linear classifiers, the decision function has the following form:

f (x) = w′x+b (1)

where w is the normal vector to the separating hyperplane, also called the weight vector,
while b is the offset. In such models, the weights can be considered as importance factors
for the features: the higher the weight (in absolute value), the more important the corre-
sponding feature. Thus, if n features are needed, we can simply choose those having the
n highest weights [11].

In SVMs the optimal parameters (w,b) are found by maximizing the margin of the
separating hyperplane, i.e. 2/‖w‖. In order to deal with non-linearity, kernel functions
are introduced, that is the input vectors are implicitly mapped to a so-called feature space
using k(x,z) = φ(x)′φ(z), where k and φ denotes the kernel function and the feature
mapping, respectively. The above procedure is not limited to the linear case: in order to

3More precisely, if x.y.z was imported, we include x, x.y and x.y.z as well; when searching for a method
call or class instantiation, we similarly update the occurrence of every higher-level module.

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features 91



find the most relevant features, one can observe the change in the resulting weight vector
as described by SVM Recursive Feature Elimination [11,21].

SVM is originally a binary classification algorithm, but multi-class formulations of
the maximum margin separation principle also exist; see for example [25]. However, be-
cause of efficiency reasons, different combination schemes of binary classifiers are usu-
ally applied as one-versus-rest and one-versus-one approaches [13]. The task is to select
the most relevant features for every category. In one-versus-rest, having c classes, c clas-
sifiers are built: each model is trained by considering the samples of the i-th class as posi-
tives and all the other samples as negatives. In this case we can select in a straightforward
manner the highest weighted feature for each class.

For the one-versus-one scheme, we use a voting system. In this approach, a separate
classifier is built for every class pair, and every classifier will possess an initially empty
bag of features. For every weight vector, we select the highest n positive and lowest n
negative weights, and the corresponding feature counts are incremented for the actual
positive and negative classes. After going through all c(c−1)/2 weight vectors, we can
rank the most relevant features for every class by taking into account the received votes.

5. Experiments, Results and Discussion

5.1. The Dataset

The first problem needed to be tackled was to collect usable data for the experiments.
Usable data in our case means open software code and labels, categories attached to the
projects. For this we studied three of the most popular software project hosting sites:
Github4, Bitbucket5 and Sourceforge6. In order to gather statistics about the projects, all
of the above services offer REST APIs. After studying the provided functionalities we
discovered the following:

• None of the APIs offer topic information about the projects.
• Only Sourceforge was designed from the beginning to support project categories;

here the projects are organized into a hierarchy, but the REST API cannot be used
to retrieve this.

• Only Github and Bitbucket offers the possibility to query projects based on dif-
ferent properties (e.g. number of stargazers, date of creation, etc.).

• There are no category or topic labels on Bitbucket at all.
• On 31.01.2017, or possibly earlier, but announced on this date, Github introduced

topic labels for projects.7 One can add topics on the main page of the project
using the “Add topics” links. It is also mentioned in the post that suggested topics
can appear when assigning a topic to a repository, and this is the result of the
application of machine learning and natural language processing methods. These
keywords can be changed—added, deleted, modified—at any time, not only when
creating a new project. However, probably since this is a newly introduced feature,

4https://github.com/
5https://bitbucket.org/
6https://sourceforge.net/
7Introducing Topics, https://github.com/blog/2309-introducing-topics, date of retrieval:

10.04.2017

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features92



Figure 1. Word cloud showing the labels attached to Python projects in our Github-based dataset.

only a fraction of the existing projects have category labels, moreover the API
does not support querying these yet.

Taking into consideration the above findings, we decided to use Github and utilize
the existing topic tags by retrieving and processing the HTML pages of the projects.

Currently, Github hosts more than 19.4 million active repositories8, only a fraction
of which represent public (open source) projects. To cut off less popular projects with
no relevant usage or activity, we narrowed down the number of open projects using the
stargazers count: as of 27.02.2017, using the search qualifier stars:>=100, we managed
to collect 78518 metadata records about Github-hosted projects. The metadata database
contains the following fields: 0: language, 1: total downloads count, 2: commit counts
for the last 52 weeks, 3: stargazers (stars) count, 4: watchers count, 5: list of topics, 6:
description of project, 7: number of contributors, 8: total number of contributions, 9: date
of project creation.9

In this stage of the research, we focused on one programming language only: we se-
lected those projects for which Python was given as primary language, resulting in 7590
projects. This number decreased further when selecting only labeled projects, arriving at
a final number of 1351. Then different labels were counted and some of these categories
were selected for the experiments described below.

5.2. Experimental Results and Discussion

For performing the categorization experiments, we selected some of the most frequent
labels. The different labels found in our database are shown by the word cloud in Fig-
ure 1. Excluding the labels denoting programming languages, we defined the following
three experiments:

(1) binary classification using ’machine-learning’ (67) and ’security’ (54 projects)
labels;

(2) binary classification using ’linux’ (45) and ’windows’ (22 projects) labels;
(3) multi-class classification using the first 16 most frequent labels: ’django’ (101),

’machine-learning’ (67), ’deep-learning’ (62), ’tensorflow’ (60), ’security’ (54),
’linux’ (45), ’cli’ (44), ’flask’ (36), ’data-science’ (29), ’api’ (25), ’terminal’ (25),
’visualization’ (24), ’git’ (24), ’windows’ (22), ’aws’ (21), ’music’ (20 projects).

8The state of the Octoverse 2016, https://octoverse.github.com/, date of retrieval: 10.04.2017
9The dataset was made available for download at http://www.cs.ubbcluj.ro/~zbodo/github.html.

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features 93



Table 1. ’machine-learning’ versus ’security’ classification results.

Classifier Normalization FS1 FS2 FS3 FS4

SVM n.n. 73.50 59.67 75.90 75.16
�1 55.33 67.14 55.33 62.63
�2 86.76 67.14 90.86 90.06

Random forest n.n. 82.95 63.23 81.28 82.28
�1 83.28 62.63 81.94 77.15
�2 84.28 63.23 82.46 79.96

Decision tree n.n. 88.36 52.08 89.20 87.53
�1 87.63 53.73 90.86 90.03

�2 86.76 53.73 90.86 90.03

k-NN n.n. 69.43 65.60 81.03 81.76
�1 69.30 65.60 73.43 76.80
�2 76.80 64.28 89.23 87.56

For performing the categorization, we used the following classifiers, using the scikit-
learn Python library10:

(a) linear SVM [3] (one-versus-one scheme for the multi-class case)
(b) random forest [4] (10 estimators)
(c) decision tree [20] (Gini impurity)
(c) k-nearest neighbors [6] (k = 5)

The collected data was not separated into training and test sets, but the 5-fold cross
validation was used to measure the performance. The parameters of the used models,
however, were not optimized.

The present classification problem is a multi-label one, that is an example can
have more than one label: a project can belong to ’machine-learning’, ’big-data’, ’data-
science’, etc. category as well. Therefore, every project was included as many times as
the number of different labels it had. However, we did not take into account the multi-
label property when considering the output of the classifiers. Similarly, no advanced per-
formance indicators such as precision, recall, F-measure or ROC AUC [17] were used;
the results presented in Table 1–3 are 5-fold cross-validation accuracy results. In every
table, we highlighted the results having one of the three highest integer parts.

Table 4 shows the relevant library features found by one-versus-one linear SVM.11

In the table, only the first ten distinct top-level module/package names were left in de-
creasing order of their received votes from the binary classifiers. If less than ten libraries
are listed, this does not mean error but zero votes for the other modules.

The feature sets, after processing all the downloaded Python projects (1351), have
the following cardinalities:

FS1 1478134
FS2 5239581
FS3 226211
FS4 226211

10http://scikit-learn.org/, version 0.18.1.
11We performed experiments also using one-versus-rest SVMs with seemingly inferior results, therefore we

decided not to publish it here.

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features94



Table 2. ’linux’ versus ’windows’ classification results.

Classifier Normalization FS1 FS2 FS3 FS4

SVM n.n. 59.67 59.67 61.09 59.56
�1 67.14 67.14 67.14 67.14

�2 67.14 67.14 65.71 65.60

Random forest n.n. 63.82 62.92 62.63 62.63
�1 62.63 62.06 62.63 62.63
�2 62.63 62.61 63.63 62.63

Decision tree n.n. 47.80 52.08 58.24 58.13
�1 50.87 53.73 56.81 50.87
�2 55.38 53.73 56.81 47.69

k-NN n.n. 65.71 65.60 65.60 67.14

�1 58.13 65.60 53.73 59.56
�2 64.17 64.28 65.60 67.14

Table 3. Results of the 16-class experiment.

Classifier Normalization FS1 FS2 FS3 FS4

SVM n.n. 34.14 31.41 35.21 36.27
�1 15.32 15.32 24.27 29.58
�2 37.63 23.82 43.85 44.15

Random forest n.n. 36.63 36.20 37.48 38.85
�1 37.21 36.38 38.84 37.94
�2 37.60 35.60 38.24 38.85

Decision tree n.n. 36.41 35.05 33.53 35.05
�1 35.35 35.05 35.96 38.54
�2 37.02 35.05 36.57 37.33

k-NN n.n. 25.79 17.44 35.05 39.75

�1 29.74 26.55 32.61 35.35
�2 31.86 27.31 34.43 36.56

The sets F3 and F4 are, indeed, smaller than the “naive” ones by an order of magnitude.
The equal dimensionality of F3 and F4 is due to the fact that F4 does not introduce new
features, but finds a few more occurrences of the same features.

As expected, the results in Table 1–3 show that FS1 performs better than FS2, while
FS3 and FS4 perform better than the first two sets. It is also evident from the experiments
that discriminating between ’machine-learning’ and ’security’ is a much simpler problem
than differentiating between ’linux’ and ’windows’, both denoting operating systems,
and therefore having many common properties. This can also be seen from Table 4,
showing four common modules within the first ten most relevant features. The 16-class
experiments might not seem very promising at the first sight, but one has to keep in
mind that a random classifier—taking into account the class distribution as well—would
produce an accuracy of about 8%. One also has to take into account the fact that the top
16 classes include the ’linux’ and ’windows’ categories too, and might be other similar
cases as well, which evidently deteriorates the overall accuracy. In the next section, we
discuss possible future improvements of the present system.

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features 95



Table 4. Relevant libraries found by feature identification.

django django, dotenv, configurations, signal, os,

pyinstrument, sys, models

machine-learning digits, tensorflow, os, numpy, sklearn, google,

scipy, keras, future , datetime

deep-learning gym starcraft, torchcraft py, keras, cv2,

tensorflow, random, numpy, config, layers, os

tensorflow time, tensorflow, six, keras, tarfile, future ,

numpy, sys, distkeras, re

security time, socket, metrics, json, anchore, subprocess,

afl utils, sys, glob, urllib2

linux gdb, Xlib, sys, os, time, click, subprocess,

pygments, prompt toolkit, ctypes

cli json, sys, os, yaml, colorama, cliff, click,

subprocess, logging, prompt toolkit

flask flask, enum, redis, json, requests, zappa, click,

config, datetime, nets

data-science cliff, datetime, html, re, feedparser,

progressbar, time, locate datasets, tensorlayer,

pylab

api urllib2, bs4, PIL, json, re, slacker, os,

tumblpy, quora, exceptions

terminal termfeed, colorama, os, urllib, re, PIL,

selenium, sys, setuptools, time

visualization subprocess, tempfile, json, logging, numpy, ast,

setuptools, Constant, sys, gdal

git git, email, sys, subprocess, colorama,

git multimail, klaus, ssl, pbr, lib

windows Xlib, threading, ctypes, sublime, re, os,

pyxhook, sys, cget, qtodotxt

aws boto, argparse, util, sys, chalice, aq, re, time,

django, nose

music setuptools, re, random, database, unittest,

mutagen, musthe, librosa, os, requests

The fact that FS4 induces no significant performance improvement over FS3 is good
news for us: even the naive trace implemented in FS4 would be quite complicated to
realize in languages like C or C++. In these programming languages, external knowledge
is needed to determine the method or class to which a library belongs.

A threat to the validity of the experiments is whether the sample we were working on
is representative. We tried to minimize this by not applying any filtering when selecting
the software projects, which were filtered only by the number of Github stargazers (to
filter out small, unpopular projects) and programming language. However, We applied
another filter by category labels, omitting the projects without such keywords. At this
stage, we did not want to introduce additional noise in our system by using automatically
extracted keywords (e.g. from project descriptions). Another threat can be in the selection
of categories. To minimize this, we selected the most frequent categories, having at least
20 examples. Only category labels denoting programming languages were filtered out,
thereby arriving at 16 categories.

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features96



6. Conclusion and Future Work

We presented here our preliminary results in studying open source software repositories
by comparing four low-level distributional representations for categorizing software. The
resulting classifier can also be used to identify relevant libraries for specific software
categories.

The classifier built can be used for automatically categorizing projects, or simply
recommending topic labels, whilst categories can greatly help when searching for soft-
ware projects. Also, the generated vectors can be used directly for calculating software
resemblance using the cosine similarity [17]. Given simple keywords or a textual de-
scription of the project topics, our system is able to recommend libraries for the devel-
opers; this feature can be extremely helpful in situations when programmers have less
experience in the given domain.

As mentioned in Section 5.1, we only used labeled projects in the experiments. Us-
ing the short textual description of the projects, we can assign labels to originally unla-
beled software, using for example the tf-idf weighting [23,17] or other keyword selection
methods.

Because category predictions should not be influenced by software length, we ex-
perimented different normalization schemes, as shown in the tables of Section 5.2. Be-
fore normalization, we could use other prior statistical information, e.g. idf, regarding
the imported libraries.

As described in Section 3, for an import we included the top-level and all possible
submodules. Prior to categorization or any other operation on the generated vectors, we
could filter out the submodules and leave only the top-level imports. Presently, local
modules are also included in the feature set, however, these could be safely removed,
being only noise in this representation.

Acknowledgements

This work was supported by the European Regional Development Fund and the Ro-
manian Government through the Competitiveness Operational Programme 2014–2020,
project ID P 37 679, MySMIS code 103319, contract no. 157/16.12.2016.

References

[1] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning to write
programs. arXiv preprint arXiv:1611.01989, 2016.

[2] E. Blanzieri and A. Bryl. A survey of learning-based techniques of email spam filtering. Artificial
Intelligence Review, 29(1):63–92, 2008.

[3] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings
of the fifth annual workshop on Computational learning theory, pages 144–152. ACM, 1992.

[4] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[5] S. Cesare and Y. Xiang. Software similarity and classification. Springer Science & Business Media,

2012.
[6] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information

Theory, IT-13(1):21–7, January 1967.
[7] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent

semantic analysis. Journal of the American society for information science, 41(6):391, 1990.

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features 97



[8] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, and P. Kohli. Robustfill: Neural program
learning under noisy i/o. arXiv preprint arXiv:1703.07469, 2017.

[9] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.
[10] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of machine learning

research, 3(Mar):1157–1182, 2003.
[11] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support

vector machines. Machine learning, 46(1):389–422, 2002.
[12] A. E. Hassan and T. Xie. Software intelligence: the future of mining software engineering data. In

Proceedings of the FSE/SDP workshop on Future of software engineering research, pages 161–166.
ACM, 2010.

[13] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines. IEEE
transactions on Neural Networks, 13(2):415–425, 2002.

[14] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. On automatic categorization of open source
software. In 3rd Workshop on Open Source Software Engineering, pages 79–83, 2003.

[15] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. Mudablue: An automatic categorization system
for open source repositories. Journal of Systems and Software, 79(7):939–953, 2006.

[16] M. Lam, R. Sethi, J. Ullman, and A. Aho. Compilers: Principles. Techniques, and Tools, 2006.
[17] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval. Cambridge Univer-

sity Press, 2008.
[18] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and M. Grechanik. Categorizing software applica-

tions for maintenance. In Software Maintenance (ICSM), 2011 27th IEEE International Conference on,
pages 343–352. IEEE, 2011.

[19] C. Perţicaş, B. Indurkhya, R. V. Florian, and L. Csató. Finding patterns in visualizations of programs. To
appear in the Proceedings of the 28th Annual Workshop of Psychology of Programming Interest Group
(PPIG 2017), Delft (Netherlands), July 1–2, 2017.

[20] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
[21] A. Rakotomamonjy. Variable selection using svm-based criteria. Journal of machine learning research,

3(Mar):1357–1370, 2003.
[22] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue prob-

lem. Neural computation, 10(5):1299–1319, 1998.
[23] F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1–47,

2002.
[24] K. Tian, M. Revelle, and D. Poshyvanyk. Using latent dirichlet allocation for automatic categorization of

software. In Mining Software Repositories, 2009. MSR’09. 6th IEEE International Working Conference
on, pages 163–166. IEEE, 2009.

[25] J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In ESANN,
volume 99, pages 219–224, 1999.

[26] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data mining for software engineering. Computer, 42(8),
2009.

Z. Bodó and B. Indurkhya / Software Categorization Using Low-Level Distributional Features98


